Transgenic Soybean for Production of Thermostable α-Amylase

Author:

Cao Zhenyan1,Jiang Ye1,Li Jiajie1,Zheng Ting12ORCID,Lin Chaoyang1,Shen Zhicheng1

Affiliation:

1. State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China

2. Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China

Abstract

Alpha-amylases are crucial hydrolase enzymes which have been widely used in food, feed, fermentation, and pharmaceutical industries. Methods for low-cost production of α-amylases are highly desirable. Soybean seed, functioning as a bioreactor, offers an excellent platform for the mass production of recombinant proteins for its ability to synthesize substantial quantities of proteins. In this study, we generated and characterized transgenic soybeans expressing the α-amylase AmyS from Bacillus stearothermophilus. The α-amylase expression cassettes were constructed for seed specific expression by utilizing the promoters of three different soybean storage peptides and transformed into soybean via Agrobacterium-mediated transformation. The event with the highest amylase activity reached 601 U/mg of seed flour (one unit is defined as the amount of enzyme that generates 1 micromole reducing ends per min from starch at 65 °C in pH 5.5 sodium acetate buffer). The optimum pH, optimum temperature, and the enzymatic kinetics of the soybean expressed enzyme are similar to that of the E. coli expressed enzyme. However, the soybean expressed α-amylase is glycosylated, exhibiting enhanced thermostability and storage stability. Soybean AmyS retains over 80% activity after 100 min at 75 °C, and the transgenic seeds exhibit no significant activity loss after one year of storage at room temperature. The accumulated AmyS in the transgenic seeds represents approximately 15% of the total seed protein, or about 4% of the dry seed weight. The specific activity of the transgenic soybean seed flour is comparable to many commercial α-amylase enzyme products in current markets, suggesting that the soybean flour may be directly used for various applications without the need for extraction and purification.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3