Development of Methods for Improving Flowering and Seed Set of Diverse Germplasm in Cassava Breeding

Author:

Hyde Peter T.1,Esan Olayemisi2,Diebiru-Ojo Elohor Mercy2ORCID,Iluebbey Peter2,Kulakow Peter A.2ORCID,Peteti Prasad2ORCID,Setter Tim L.1ORCID

Affiliation:

1. Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA

2. Cassava Breeding Unit, International Institute of Tropical Agriculture, Ibadan 200001, Nigeria

Abstract

Cassava breeding faces obstacles due to late flowering and poor flower and seed set. The acceleration of breeding processes and the reduction in each cycle’s duration hinge upon efficiently conducting crosses to yield ample progeny for subsequent cycles. Our primary objective was to identify methods that provide tools for cassava breeding programs, enabling them to consistently and rapidly generate offspring from a wide array of genotypes. In greenhouse trials, we examined the effects of the anti-ethylene silver thiosulfate (STS) and the cytokinin benzyladenine (BA). STS, administered via petiole infusion, and BA, applied as an apical spray, combined with the pruning of young branches, significantly augmented the number of flowers. Controls produced no flowers, whereas treatments with pruning plus either BA or STS alone produced an average maximum of 86 flowers per plant, and the combination of pruning, BA and STS yielded 168 flowers per plant. While STS had its primary effect on flower numbers, BA increased the fraction of female flowers from less than 20% to ≥87%, thus increasing the number of progeny from desired parents. Through field studies, we devised an optimal protocol that maintained acceptable levels of phytodamage ratings while substantially increasing seed production per plant compared to untreated plants. This protocol involves adjusting the dosage and timing of treatments to accommodate genotypic variations. As a result, cassava breeding programs can effectively leverage a diverse range of germplasm to develop cultivars with the desired traits.

Funder

NextGen Cassava Breeding Project, managed by Cornell University with funds from the Bill and Melinda Gates Foundation

United Kingdom’s Foreign, Commonwealth and Development Office

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3