Analysis of the UDP-Glucosyltransferase (UGT) Gene Family and Its Functional Involvement in Drought and Salt Stress Tolerance in Phoebe bournei

Author:

Guan Hengfeng1ORCID,Zhang Yanzi2,Li Jingshu1,Zhu Zhening1,Chang Jiarui1,Bakari Almas1,Chen Shipin1,Zheng Kehui3ORCID,Cao Shijiang1

Affiliation:

1. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China

3. College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Uridine diphosphate glycosyltransferases (UDP-GTs, UGTs), which are regulated by UGT genes, play a crucial role in glycosylation. In vivo, the activity of UGT genes can affect the availability of metabolites and the rate at which they can be eliminated from the body. UGT genes can exert their regulatory effects through mechanisms such as post-transcriptional modification, substrate subtype specificity, and drug interactions. Phoebe bournei is an economically significant tree species that is endemic to southern China. Despite extensive studies on the UGT gene family in various species, a comprehensive investigation of the UGT family in P. bournei has not been reported. Therefore, we conducted a systematic analysis to identify 156 UGT genes within the entire P. bournei genome, all of which contained the PSPG box. The PbUGT family consists of 14 subfamilies, consistent with Arabidopsis thaliana. We observed varying expression levels of PbUGT genes across different tissues in P. bournei, with the following average expression hierarchy: leaf > stem xylem > stem bark > root xylem > root bark. Covariance analysis revealed stronger covariance between P. bournei and closely related species. In addition, we stressed the seedlings with 10% NaCl and 10% PEG-6000. The PbUGT genes exhibited differential expression under drought and salt stresses, with specific expression patterns observed under each stress condition. Our findings shed light on the transcriptional response of PbUGT factors to drought and salt stresses, thereby establishing a foundation for future investigations into the role of PbUGT transcription factors.

Funder

Fujian Agriculture and Forestry University Forestry Peak Discipline Construction Project

Seventh Project of Forest Seeding Breaking in Fujian Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3