Transcriptome Analysis Reveals Drought-Responsive Pathways and Key Genes of Two Oat (Avena sativa) Varieties

Author:

Xu Weiwei12ORCID,Guo Laichun23ORCID,Wang Chunlong2,Wei Liming2ORCID,Wang Qiang23ORCID,Ren Qinyong12,Yang Xiwu12,Zhan Chao2,Liang Xiaotian12ORCID,Wang Junying4,Ren Changzhong12

Affiliation:

1. Agronomy College, Jilin Agricultural University, Changchun 130118, China

2. National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng 137000, China

3. College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China

4. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

To cope with the yield loss caused by drought stress, new oat varieties with greater drought tolerance need to be selected. In this study, two oat varieties with different drought tolerances were selected for analysis of their phenotypes and physiological indices under moderate and severe soil drought stress. The results revealed significant differences in the degree of wilting, leaf relative water content (RWC), and SOD and CAT activity between the two oat genotypes under severe soil drought stress; moreover, the drought-tolerant variety exhibited a significant increase in the number of stomata and wax crystals on the surface of both the leaf and guard cells; additionally, the morphology of the guard cells was normal, and there was no significant disruption of the grana lamella membrane or the nuclear envelope. Furthermore, transcriptome analysis revealed that the expression of genes related to the biosynthesis of waxes and cell-wall components, as well as those of the WRKY family, significantly increased in the drought-tolerant variety. These findings suggest that several genes involved in the antioxidant pathway could improve drought tolerance in plants by regulating the increase/decrease in wax and cell-wall constituents and maintaining normal cellular water potential, as well as improving the ability of the antioxidant system to scavenge peroxides in oats.

Funder

China Agriculture Research System

Science and Technology Development Program of Jilin Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3