The Slow Growth of Adventitious Roots in Tetraploid Hybrid Poplar (Populus simonii × P. nigra var. italica) May Be Caused by Endogenous Hormone-Mediated Meristem Shortening
Author:
Wu Lixia1234ORCID, Ren Yuxin1234, Wang Xuefang1234, Zhang Yuntong1234, Wang Jun1234ORCID
Affiliation:
1. State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China 2. National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China 3. Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China 4. College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
Abstract
Polyploidization produces abundant phenotypic variation. Little is currently known about adventitious root (AR) development variation due to polyploidization. In this study, we analyzed the morphological, cytological, and physiological variations in AR development between tetraploid and diploid Populus plants during in vitro rooting culture. Compared to the diploids, the AR formation times and rooting rates of the tetraploids’ stem explants had non-significant changes. However, the tetraploid ARs exhibited significantly slower elongation growth than the diploid ARs. Cytological observation showed that the tetraploid ARs were characterized by shorter root meristems and reduced meristem cell numbers, suggesting the reasons for the slow AR elongation. Analysis of hormones and related metabolites during AR development demonstrated that the total auxin, cytokinin, and jasmonic acid contents were significantly lower in the tetraploid ARs than in those of the diploids, and that the ratio of total auxins to total CKs at 0 h of AR development was also lower in the tetraploids than in the diploids, whereas the total salicylic acid content of the tetraploids was consistently higher than that of the diploids. qPCR analysis showed that the expression levels of several hormone signaling and cell division-related genes in the tetraploid ARs significantly differed from those in the diploids. In conclusion, the slow elongation of the tetraploid ARs may be caused by the endogenous hormone-mediated meristem shortening. Our findings enhance the understanding of polyploidization-induced variation in AR development of forest trees.
Funder
National Key Research and Development Program of China during the 14th Five-Year Plan Period
Reference73 articles.
1. Mayrose, I., Zhan, S.H., Rothfels, C.J., Magnuson-Ford, K., Barker, M.S., Rieseberg, L.H., and Otto, S.P. (2011). Recently formed polyploid plants diversify at lower rates. Science, 333. 2. Epigenetic and developmental regulation in plant polyploids;Song;Curr. Opin. Plant Biol.,2015 3. Chromosome pairing in polyploid grasses;Sourdille;Front. Plant Sci.,2020 4. Thomas, C.L., Alcock, T.D., Graham, N.S., Hayden, R., Matterson, S., Wilson, L., Young, S.D., Dupuy, L.X., White, P.J., and Hammond, J.P. (2016). Root morphology and seed and leaf lonomic traits in a Brassica napus L.: Diversity panel show wide phenotypic variation and are characteristic of crop habit. BMC Plant Biol., 16. 5. Chen, X., Lai, H., Li, R., Yao, Y., Liu, J., Yuan, S., Fu, S., Hu, X., and Guo, J. (2021). Character changes and Transcriptomic analysis of a cassava sexual Tetraploid. BMC Plant Biol., 21.
|
|