Affiliation:
1. Key Laboratory of Applied Ecology of Loess Plateau, College of Life Science, Yan’an University, Yan’an 716000, China
Abstract
This review paper synthesizes the current understanding of greenhouse gas (GHG) emissions from field cropping systems. It examines the key factors influencing GHG emissions, including crop type, management practices, and soil conditions. The review highlights the variability in GHG emissions across different cropping systems. Conventional tillage systems generally emit higher levels of carbon dioxide (CO2) and nitrous oxide (N2O) than no-till or reduced tillage systems. Crop rotation, cover cropping, and residue management can significantly reduce GHG emissions by improving soil carbon sequestration and reducing nitrogen fertilizer requirements. The paper also discusses the challenges and opportunities for mitigating GHG emissions in field cropping systems. Precision agriculture techniques, such as variable rate application of fertilizers and water, can optimize crop production while minimizing environmental impacts. Agroforestry systems, which integrate trees and crops, offer the potential for carbon sequestration and reducing N2O emissions. This review provides insights into the latest research on GHG emissions from field cropping systems and identifies areas for further study. It emphasizes the importance of adopting sustainable management practices to reduce GHG emissions and enhance the environmental sustainability of agricultural systems.
Funder
Shanxi Province Key Special Project for the Fusion of “Two Chains”
Shaanxi Provincial Department of Education Youth Innovation Team construction research project
National Natural Science Foundation of China