Synthesis, Structural Features, and Catalytic Activity of an Iron(II) 3D Coordination Polymer Driven by an Ether-Bridged Pyridine-Dicarboxylate

Author:

Zhao Na,Li Yu,Gu Jinzhong,Kirillova Marina V.,Kirillov Alexander M.ORCID

Abstract

New iron(II) three-dimensional coordination polymer (3D CP), [Fe(µ3-Hcpna)2]n (1), was assembled under hydrothermal conditions from 5-(4’-carboxyphenoxy)nicotinic acid (H2cpna) as a trifunctional organic N,O-building block. This stable microcrystalline CP was characterized by standard methods for coordination compounds in the solid state (infrared spectroscopy, elemental analysis, thermogravimetric analysis, powder and single-crystal X-ray diffraction). Structure and topology of 1 were examined and permitted an identification of a 3,6-connected framework of the rtl topological type. In addition, compound 1 acts as effective catalyst precursor for oxidative functionalization of alkanes (propane and cyclic C5−C8 alkanes) under homogeneous catalysis conditions, namely for the oxidation of saturated hydrocarbons with H2O2/H+ system to produce ketones and alcohols, and for alkane carboxylation with CO/H2O/S2O82− system to obtain carboxylic acids. The influence of an acid promoter and substrate scope (propane and cyclic C5−C8 alkanes) were investigated.

Funder

Natural Science Foundation of Guangdong Province

Foundation for Science and Technology (FCT) and Portugal 2020

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference52 articles.

1. Gas. Adsorption in Metal-Organic Frameworks: Fundamentals and Applications,2018

2. Pillared Metal-Organic Frameworks: Properties and Applications;Hashemi,2019

3. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship

4. Metal-Organic Frameworks for Photonics Applications,2014

5. Luminescent Functional Metal–Organic Frameworks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3