Effects of Thermal Exposure Temperature on Room-Temperature Tensile Properties of Ti65 Alloy

Author:

Wang Yuan-Chen1,Liu Jian-Yang2,Liu Jian-Rong1,Li Wen-Yuan1,Zhang Bin2,Zhang Guang-Ping1ORCID

Affiliation:

1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

2. Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China

Abstract

As a critical material for high-temperature components of aero-engines, the mechanical properties of Ti65 alloy, subjected to high-temperature and long-term thermal exposure, directly affect its service safety. The room-temperature tensile properties of the Ti65 alloy after thermal exposure to temperatures ranging from 450 °C to 650 °C for 100 h were investigated. The results indicate that as the thermal exposure temperature increases, the strength of Ti65 alloy initially increases and then decreases, while ductility exhibits a decreasing trend. The strength of the thermally exposed alloy positively correlates with the size and content of the α2 phase. The ductility of the thermally exposed alloy is comprehensively influenced by the surface oxidation behavior, α2 phase, and silicides. After the prolonged thermal exposure, stress concentration at the crack tips within the oxide layer was enhanced with the increased thickness of the surface TiO2 oxide layer, leading to premature fracture due to reduced alloy ductility. Furthermore, the α2 phase in the matrix promotes the planar slip of dislocations, while silicides at the α/β phase boundaries hinder dislocation motion, causing dislocation pile-ups. Both behaviors facilitate crack nucleation and deteriorate alloy ductility.

Funder

National Science and Technology Major Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3