Evaluation of Ti–Mn Alloys for Additive Manufacturing Using High-Throughput Experimental Assays and Gaussian Process Regression

Author:

Gong XinyiORCID,Yabansu YukselORCID,Collins PeterORCID,Kalidindi SuryaORCID

Abstract

Compositionally graded cylinders of Ti–Mn alloys were produced using the Laser Engineered Net Shaping (LENS™) technique, with Mn content varying from 0 to 12 wt.% along the cylinder axis. The cylinders were subjected to different post-build heat treatments to produce a large sample library of α–β microstructures. The microstructures in the sample library were studied using back-scattered electron (BSE) imaging in a scanning electron microscope (SEM), and their mechanical properties were evaluated using spherical indentation stress–strain protocols. These protocols revealed that the microstructures exhibited features with averaged chord lengths in the range of 0.17–1.78 μm, and beta content in the range of 20–83 vol.%. The estimated values of the Young’s moduli and tensile yield strengths from spherical indentation were found to vary in the ranges of 97–130 GPa and 828–1864 MPa, respectively. The combined use of the LENS technique along with the spherical indentation protocols was found to facilitate the rapid exploration of material and process spaces. Analyses of the correlations between the process conditions, several key microstructural features, and the measured material properties were performed via Gaussian process regression (GPR). These data-driven statistical models provided valuable insights into the underlying correlations between these variables.

Funder

Division of Materials Research

Office of Naval Research

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3