Self-Adaptive Flask-like Nanomotors Based on Fe3O4 Nanoparticles to a Physiological pH

Author:

Gao Tianyu,Lin Jinwei,Xu Leilei,Guan JianguoORCID

Abstract

In living bodies, pH values, which are precisely regulated and closely associated with diseased cells, can act as an efficient biologically intrinsic indicator for future intelligent biomedicine microsystems. In this work, we have developed flask-like carbonaceous nanomotors (FCNMs), via loading Fe3O4 nanoparticles (NPs) into a cavity, which exhibit a self-adaptive feature to a specific physiological pH by virtue of the pH-dependent dual enzyme-like activities of Fe3O4 NPs. Specifically, the peroxidase-like activity of Fe3O4 NPs in an acidic pH range, and the catalase-like activity in a near neutral and alkaline pH range, determine the products in the motion system (•OH, ions and O2), whose diffusions from the inner to the outside of the flask result in fluid movement providing the driving force for the movement of the FCNMs. Correspondingly, changes of the product concentrations and species in the physiological pH range (4.4–7.4) result, firstly, in velocity decrease and, then, with increase in pH, increase of the FCNMs occurs. Thanks to the non-linear velocity responsiveness, the FCNMs show intriguing pH taxis towards 6.8 (generally corresponding to the physiological pH in tumor microenvironments), where a maximum velocity appears. Furthermore, the superparamagnetic feature of the Fe3O4 NPs simultaneously endows the FCNMs with the abilities to be magnetic-oriented and easily separated. This work could significantly increase the possibility of nanomotors for targeted therapy of tumors and next-generation biotechnological applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3