Confined Tri‐Functional FeOx@MnO2@SiO2 Flask Micromotors for Long‐Lasting Motion and Catalytic Reactions

Author:

Yang Yangyang1,Shi Lei2,Lin Jingkai1,Zhang Panpan3,Hu Kunsheng1,Meng Shuang4,Zhou Peng4,Duan Xiaoguang1,Sun Hongqi5,Wang Shaobin1ORCID

Affiliation:

1. School of Chemical Engineering and Advanced Materials The University of Adelaide North Terrace Adelaide South Australia 5005 Australia

2. Joint International Research Laboratory of Biomass Energy and Materials College of Materials Science and Engineering Nanjing Forestry University Nanjing 210037 China

3. School of Material Science and Engineering Jiangsu University Zhenjiang 212013 China

4. College of Architecture and Environment Sichuan University Chengdu 610065 China

5. School of Science Edith Cowan University 270 Joondalup Drive Joondalup Western Australia 6027 Australia

Abstract

AbstractH2O2‐fueled micromotors are state‐of‐the‐art mobile microreactors in environmental remediation. In this work, a magnetic FeOx@MnO2@SiO2 micromotor with multi‐functions is designed and demonstrated its catalytic performance in H2O2/peroxymonosulfate (PMS) activation for simultaneously sustained motion and organic degradation. Moreover, this work reveals the correlations between catalytic efficiency and motion behavior/mechanism. The inner magnetic FeOx nanoellipsoids primarily trigger radical species (OH and O2•−) to attack organics via Fenton‐like reactions. The coated MnO2 layers on FeOx surface are responsible for decomposing H2O2 into O2 bubbles to provide a propelling torque in the solution and generating SO4•− and OH for organic degradation. The outer SiO2 microcapsules with a hollow head and tail result in an asymmetrical Janus structure for the motion, driven by O2 bubbles ejecting from the inner cavity via the opening tail. Intriguingly, PMS adjusts the local environment to control over‐violent O2 formation from H2O2 decomposition by occupying the Mn sites via inter‐sphere interactions and enhances organic removal due to the strengthened contacts and Fenton‐like reactions between inner FeOx and peroxides within the microreactor. The findings will advance the design of functional micromotors and the knowledge of micromotor‐based remediation with controlled motion and high‐efficiency oxidation using multiple peroxides.

Funder

Australian Research Council

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3