Role of Ambient Hydrogen in HiPIMS-ITO Film during Annealing Process in a Large Temperature Range

Author:

Zhao Ming-Jie,Zhang Jin-Fa,Huang Jie,Chen Zuo-Zhu,Xie An,Wu Wan-Yu,Huang Chien-Jung,Wuu Dong-SingORCID,Lien Shui-Yang,Zhu Wen-Zhang

Abstract

Indium tin oxide (ITO) thin films were prepared by high power impulse magnetron sputtering (HiPIMS) and annealed in hydrogen-containing forming gas to reduce the film resistivity. The film resistivity reduces by nearly an order of magnitude from 5.6 × 10−3 Ω·cm for the as-deposited film to the lowest value of 6.7 × 10−4 Ω·cm after annealed at 700 °C for 40 min. The role of hydrogen (H) in changing the film properties was explored and discussed in a large temperature range (300–800 °C). When annealed at a low temperature of 300–500 °C, the incorporated H atoms occupied the oxygen sites (Ho), acting as shallow donors that contribute to the increase of carrier concentration, leading to the decrease of film resistivity. When annealed at an intermediate temperature of 500–700 °C, the Ho defects are thermally unstable and decay upon annealing, leading to the reduction of carrier concentration. However, the film resistivity keeps decreasing due to the increase in carrier mobility. Meanwhile, some locally distributed metallic clusters formed due to the reduction effect of H2. When annealed at a high temperature of 700–800 °C, the metal oxide film is severely reduced and transforms to gaseous metal hydride, leading to the dramatic reduction of film thickness and carrier mobility at 750 °C and vanish of the film at 800 °C.

Funder

Science and Technology Project of Xiamen

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3