Abstract
At urban signalized intersections, pedestrian twice-crossing is usually viewed as a complex human behavior, since there are many factors influencing it. Mostly, pedestrians engage in a complicated cognitive process of perception, attention and decision-making. Therefore, it is necessary to identify the major factors affecting this behavior, and develop an effective pedestrian dynamic model, in order to increase the safety and efficiency of crossing streets. This study proposes a force-based model of pedestrian dynamics by improving the classic social force model, in order to determine the influencing factors and quantify the forces acting on pedestrians crossing in two stages at signalized intersections. Through analyzing the characteristics of pedestrian twice-crossing behavior, the social force model was enhanced by providing a new component of the green signal countdown. The improved model includes four parts of the self-driving force in the ideal state, the repulsive and attractive forces generated by surrounding pedestrians, the resistance of the crosswalk boundary line, and the force produced by the green signal countdown. Each part was considered with qualitative analysis and quantitative calculation. The results show that the proposed model can achieve high accuracy in measuring the forces acting on pedestrian twice-crossing. The findings of this study have great implications for designing pedestrian facilities and optimizing pedestrian signal timings, helping thus to increase the mobility and safety of pedestrian twice-crossing.
Funder
National Natural Science Foundation of China
National Science Foundation for Distinguished Young Scholars
Natural Science Foundation of Shandong
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献