Modeling and Simulation for Non-Motorized Vehicle Flow on Road Based on Modified Social Force Model

Author:

Qin Jiaying,Ma Sasa,Zhang LeiORCID,Wang Qianling,Feng Guoce

Abstract

Non-motorized vehicles have become one of the most commonly used means of transportation for people due to their advantages of low carbon, environmental protection, convenience and safety. Frequent interaction among non-motorized vehicle users in the shared space will bring security risks to their movement. Therefore, it is necessary to adopt appropriate means to evaluate the traffic efficiency and safety of non-motorized vehicle users in the passage, and using a micro model to conduct simulation evaluation is one of the effective methods. However, some existing micro simulation models oversimplify the behavior of non-motorized vehicle users, and cannot reproduce the dynamic interaction process between them. This paper proposes a modified social force model to simulate the dynamic interaction behaviors between non-motorized vehicle users on the road. Based on the social force model, a new behavioral force is introduced to reflect the three dynamic interaction behaviors of non motor vehicle users, namely, free movement, following and overtaking. Non-motorized vehicle users choose which behavior is determined by the introduced decision model. In this way, the rule-based behavior decision model is combined with the force based method to simulate the movement of non-motorized vehicles on the road. The modified model is calibrated using 1534 non-motorized vehicle trajectories collected from a road in Xi’an, Shaanxi, China. The validity of the model is verified by analyzing the speed distribution and decision-making process of non-motorized vehicles, and comparing the simulation results of different models. The effects of the number of bicycles and the speed of electric vehicles on the flow of non-motorized vehicles are simulated and analyzed by using the calibrated model. The relevant results can provide a basis for urban management and road design.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

the Youth Foundation of Hebei Education Department

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference35 articles.

1. Large-Scale Bicycle Flow Experiment: Setup and Implementation;Gavriilidou;Transp. Res. Rec.,2019

2. How cyclist behavior affects bicycle accident configurations?;Hours;Transp. Res. Part F Traffic Psychol. Behav.,2016

3. Risky riding: Naturalistic methods comparing safety behavior from conventional bicycle riders and electric bike riders;Langford;Accid. Anal. Prev.,2015

4. Investigating cyclist interaction behavior through a controlled laboratory experiment;Yuan;J. Transp. Land Use,2008

5. Modeling and simulation of pedestrian flow in university canteen;Tang;Simul. Model. Pract. Theory,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3