A Study of Crevice Corrosion Susceptibility of Zn-Al Alloys in a High-pH Environment

Author:

Abdulsalam Mohammed I.1

Affiliation:

1. Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

This paper aims to clarify the effect of polymer coating damage of dual polymer–zinc coating used to protect rebar reinforcement from corrosion. The coating damage can result in crevices between the two materials. At these crevices, corrosion–passivation plays an important role in the integrity of the intended coating and the protectiveness of the steel base metal. An experimental design was developed to replicate a crevice of Zn-2%Al alloy. This alloy is commonly used for the dual coating protection of rebars. Experiments in this investigation were performed to test several crevice sizes and conditions to assess the state of crevice corrosion. Prepared electrodes were submerged in a 1 M NaOH solution and connected to a data logger to monitor the potential. A special reference electrode was prepared using activated titanium, against which the potential was measured. Additionally, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were carried out to assess the corrosion rate of the different specimens. The results suggest that, in the absence of a crevice, corrosion occurred on bare specimens. However, whenever a crevice was present, a shift in potential and corrosion rate values indicated that the specimen shifted from an active corrosion regime to a passive one. This shift (gain) in potential was measured as approximately 0.9 V, resulting in a shift in the electrode potential to −0.6 V (SCE). The analysis showed that the solution inside the crevice shifted toward lower pH values, with pH = 12 suggested as the level that supports more passivity inside the crevice according to the Pourbaix diagram.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3