Author:
Ding Jiawei,He Weiping,Liu Yuanhai,Zhang Chenyu,Wang Haitao,Han En-Hou
Abstract
A multiphysics model based on the finite element method was adopted, emphasizing a deeper insight into the rarely studied crevice corrosion behavior of stainless steel and titanium overlapping. The model takes into account damage due to corrosion inside the crevice, different species transportation, local electrochemical reactions, homogeneous reactions in the electrolyte, and formation of a corrosion product and its influence on electrochemical reaction. The simulation results show that the location of the greatest attack for stainless steel is at the crevice opening; this finding is consistent with the IR drop theory. The potential increases gradually from the tip to the opening of the crevice, and the current changes smoothly following a sharp rise at the opening. The minimum and maximum values of pH and Cl− concentration are both in the middle and opening of the crevice. The influence of the crevice size on corrosion is also discussed in detail.
Funder
National Key Research and Development Program of China
Aviation Science Foundation of China
LingChuang Research Project of China National Nuclear Corporation
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献