Effects of Quenching Temperature on the Microstructure and Mechanical Properties of a Strip-Cast Medium-Mn Steel Processed by Quenching and Partitioning

Author:

Yu Cansheng12,Wang Hesong2,Zhang Yuanxiang2ORCID,Li Yunjie2,Kang Jian2,Chang Zhiyuan1

Affiliation:

1. State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China

2. The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China

Abstract

Twin-roll strip casting (TRSC), which is a low-energy and short process to produce strip steel, is a potential approach to produce advanced high-strength steels. Herein, a medium-Mn steel containing 4 wt% Mn was processed using a novel route involving TRSC, hot rolling and quenching and partitioning (QP) to explore the possibility of medium-Mn steel produced by TRSC plus QP process. The effects of quenching temperature on the microstructure and mechanical properties were studied. It was found that primary martensite and retained austenite (RA) were obtained at the quenching temperature of 140–180 °C, while primary martensite, RA and secondary martensite were obtained when the quenching temperature was 220–300 °C. With an increase in quenching temperature from 140 to 260 and to 300 °C, the RA fraction first increased from 15.4% to 31.8% and then decreased to 16.6%. The sample at a quenching temperature of 220 °C yielded mechanical properties with a yield strength of 992 MPa, tensile strength of 1159 MPa and total elongation of 20.4%. The superior mechanical properties were achieved by an optimum combination of high RA fraction (26.5%), appropriate mechanical stability of RA and a small number of the islands of secondary martensite and RA. Hence, the present study provides a viable processing route for medium-Mn steel.

Funder

State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3