Forest Fire Monitoring and Positioning Improvement at Subpixel Level: Application to Himawari-8 Fire Products

Author:

Xu Haizhou,Zhang Gui,Zhou Zhaoming,Zhou XiaobingORCID,Zhou Cui

Abstract

Forest fires are among the biggest threats to forest ecosystems and forest resources, and can lead to ecological disasters and social crises. Therefore, it is imperative to detect and extinguish forest fires in time to reduce their negative impacts. Satellite remote sensing, especially meteorological satellites, has been a useful tool for forest-fire detection and monitoring because of its high temporal resolution over large areas. Researchers monitor forest fires directly at pixel level, which usually presents a mixture of forest and fire, but the low spatial resolution of such mixed pixels cannot accurately locate the exact position of the fire, and the optimal time window for fire suppression can thus be missed. In order to improve the positioning accuracy of the origin of forest fire (OriFF), we proposed a mixed-pixel unmixing integrated with pixel-swapping algorithm (MPU-PSA) model to monitor the OriFFs in time. We then applied the model to the Japanese Himawari-8 Geostationary Meteorological Satellite data to obtain forest-fire products at subpixel level. In this study, the ground truth data were provided by the Department of Emergency Management of Hunan Province, China. To validate the positioning accuracy of MPU-PSA for OriFFs, we applied the model to the Himawari-8 satellite data and then compared the derived fire results with fifteen reference forest-fire events that occurred in Hunan Province, China. The results show that the extracted forest-fire locations using the proposed method, referred to as forest fire locations at subpixel (FFLS) level, were far closer to the actual OriFFs than those from the modified Himawari-8 Wild Fire Product (M-HWFP). This improvement will help to reduce false fire claims in the Himawari-8 Wild Fire Product (HWFP). We conducted a comparative study of M-HWFP and FFLS products using three accuracy-evaluation indexes, i.e., Euclidean distance, RMSE, and MAE. The mean distances between M-HWFP fire locations and OriFFs and between FFLS fire locations and OriFFs were 3362.21 m and 1294.00 m, respectively. The mean RMSEs of the M-HWFP and FFLS products are 1225.52 m and 474.93 m, respectively. The mean MAEs of the M-HWFP and FFLS products are 992.12 m and 387.13 m, respectively. We concluded that the newly proposed MPU-PSA method can extract forest-fire locations at subpixel level, providing higher positioning accuracy of forest fires for their suppression.

Funder

Science and Technology Innovation Platform and Talent Plan Project of Hunan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3