AutoST-Net: A Spatiotemporal Feature-Driven Approach for Accurate Forest Fire Spread Prediction from Remote Sensing Data

Author:

Chen Xuexue1,Tian Ye1,Zheng Change12ORCID,Liu Xiaodong3

Affiliation:

1. School of Technology, Beijing Forestry University, Beijing 100083, China

2. State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China

3. School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China

Abstract

Forest fires, as severe natural disasters, pose significant threats to ecosystems and human societies, and their spread is characterized by constant evolution over time and space. This complexity presents an immense challenge in predicting the course of forest fire spread. Traditional methods of forest fire spread prediction are constrained by their ability to process multidimensional fire-related data, particularly in the integration of spatiotemporal information. To address these limitations and enhance the accuracy of forest fire spread prediction, we proposed the AutoST-Net model. This innovative encoder–decoder architecture combines a three-dimensional Convolutional Neural Network (3DCNN) with a transformer to effectively capture the dynamic local and global spatiotemporal features of forest fire spread. The model also features a specially designed attention mechanism that works to increase predictive precision. Additionally, to effectively guide the firefighting work in the southwestern forest regions of China, we constructed a forest fire spread dataset, including forest fire status, weather conditions, terrain features, and vegetation status based on Google Earth Engine (GEE) and Himawari-8 satellite. On this dataset, compared to the CNN-LSTM combined model, AutoST-Net exhibits performance improvements of 5.06% in MIou and 6.29% in F1-score. These results demonstrate the superior performance of AutoST-Net in the task of forest fire spread prediction from remote sensing images.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3