Runoff Estimation in the Upper Reaches of the Heihe River Using an LSTM Model with Remote Sensing Data

Author:

Xue HuazhuORCID,Liu Jie,Dong GuotaoORCID,Zhang Chenchen,Jia Dao

Abstract

Runoff estimations play an important role in water resource planning and management. Many accomplishments have been made in runoff estimations based on data recorded at meteorological stations; however, the advantages of the use of remotely sensed data in estimating runoff in watersheds for which data are lacking remain to be investigated. In this study, the MOD13A2 normalized difference vegetation index (NDVI), TRMM3B43 precipitation (P), MOD11A2 land–surface temperature (LST), MOD16A2 evapotranspiration (ET) and hydrological station data were used as data sources with which to estimate the monthly runoff through the application of a fully connected long short–term memory (LSTM) model in the upstream reach of the Heihe River basin in China from 2001 to 2016. The results showed that inputting multiple remote sensing parameters improved the quality of runoff estimation compared to the use of rain gauge observations; an increase in R2 from 0.91 to 0.94 was observed from the implementation of this process, and Nash–Sutcliffe efficiency (NSE) showed an improvement from 0.89 to 0.93. The incorporation of rain gauge data as well as satellite data provided a slight improvement in estimating runoff with a respective R2 value of 0.95 and NSE value of 0.94. This indicates that the LSTM model based on remote sensing data has great potential for runoff estimation, and data obtained by remote sensing technology provide an alternative approach for estimating runoff in areas for which available data are lacking.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3