A Hybrid Forecasting Model to Simulate the Runoff of the Upper Heihe River

Author:

Xue Huazhu1ORCID,Wu Hui1,Dong Guotao2,Gao Jianjun1

Affiliation:

1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

2. Heihe Water Resources and Ecological Protection Research Center, Lanzhou 730030, China

Abstract

River runoff simulation and prediction are important for controlling the water volume and ensuring the optimal allocation of water resources in river basins. However, the instability of medium- and long-term runoff series increases the difficulty of runoff forecasting work. In order to improve the prediction accuracy, this research establishes a hybrid deep learning model framework based on variational mode decomposition (VMD), the mutual information method (MI), and a long short-term memory network (LSTM), namely, VMD-LSTM. First, the original runoff data are decomposed into a number of intrinsic mode functions (IMFs) using VMD. Then, for each IMF, a long short-term memory (LSTM) network is applied to establish the prediction model, and the MI method is used to determine the data input lag time. Finally, the prediction results of each subsequence are reconstructed to obtain the final forecast result. We explored the predictive performance of the model with regard to monthly runoff in the upper Heihe River Basin, China, and compared its performance with other single and hybrid models. The results show that the proposed model has obvious advantages in terms of the performance of point prediction and interval prediction compared to several comparative models. The Nash–Sutcliffe efficiency coefficient (NSE) of the prediction results reached 0.96, and the coverage of the interval prediction reached 0.967 and 0.908 at 95% and 90% confidence intervals, respectively. Therefore, the proposed model is feasible for simulating the monthly runoff of this watershed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3