GapLoss: A Loss Function for Semantic Segmentation of Roads in Remote Sensing Images

Author:

Yuan WeiORCID,Xu Wenbo

Abstract

At present, road continuity is a major challenge, and it is difficult to extract the centerline vector of roads, especially when the road view is obstructed by trees or other structures. Most of the existing research has focused on optimizing the available deep-learning networks. However, the segmentation accuracy is also affected by the loss function. Currently, little research has been published on road segmentation loss functions. To resolve this problem, an attention loss function named GapLoss that can be combined with any segmentation network was proposed. Firstly, a deep-learning network was used to obtain a binary prediction mask. Secondly, a vector skeleton was extracted from the prediction mask. Thirdly, for each pixel, eight neighboring pixels with the same value of the pixel were calculated. If the value was 1, then the pixel was identified as the endpoint. Fourth, according to the number of endpoints within a buffered range, each pixel in the prediction image was given a corresponding weight. Finally, the weighted average value of the cross-entropy of all the pixels in the batch was used as the final loss function value. We employed four well-known semantic segmentation networks to conduct comparative experiments on three large datasets. The results showed that, compared to other loss functions, the evaluation metrics after using GapLoss were nearly all improved. From the predicted image, the road prediction by GapLoss was more continuous, especially at intersections and when the road was obscured from view, and the road segmentation accuracy was improved.

Funder

Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province, Chengdu University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference49 articles.

1. Automatic extraction of roads from aerial images based on scale space and snakes

2. Object-based road extraction from satellite images using ant colony optimization

3. Level set method major roads information extract from high-resolution remote-sensing imagery;Wu;J. Astronaut.,2010

4. Optimized method for road extraction from high resolution remote sensing image based on watershed algorithm;Cai;Remote Sens. Land Resour.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3