MS-AGAN: Road Extraction via Multi-Scale Information Fusion and Asymmetric Generative Adversarial Networks from High-Resolution Remote Sensing Images under Complex Backgrounds

Author:

Lin Shaofu1ORCID,Yao Xin1ORCID,Liu Xiliang1ORCID,Wang Shaohua234,Chen Hua-Min1ORCID,Ding Lei5,Zhang Jing6,Chen Guihong7,Mei Qiang8

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Chaoyang District, Beijing 100124, China

2. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China

3. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

4. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

5. Big Data Analysis, PLA Strategic Force Information Engineering University, Zhengzhou 450001, China

6. Department of Information Engineering and Computer Science, University of Trento, 38123 Trento, Italy

7. Beijing Big Data Centre, Chaoyang District, Beijing 100101, China

8. Navigation College, Jimei University, Xiamen 361021, China

Abstract

Extracting roads from remote sensing images is of significant importance for automatic road network updating, urban planning, and construction. However, various factors in complex scenes (e.g., high vegetation coverage occlusions) may lead to fragmentation in the extracted road networks and also affect the robustness of road extraction methods. This study proposes a multi-scale road extraction method with asymmetric generative adversarial learning (MS-AGAN). First, we design an asymmetric GAN with a multi-scale feature encoder to better utilize the context information in high-resolution remote sensing images (HRSIs). Atrous spatial pyramid pooling (ASPP) and feature fusion are integrated into the asymmetric encoder–decoder structure to avoid feature redundancy caused by multi-level cascading operations and enhance the generator network’s ability to extract fine-grained road information at the pixel level. Second, to maintain road connectivity, topologic features are considered in the pixel segmentation process. A linear structural similarity loss (LSSIM) is introduced into the loss function of MS-AGAN, which guides MS-AGAN to generate more accurate segmentation results. Finally, to fairly evaluate the performance of deep models under complex backgrounds, the Bayesian error rate (BER) is introduced into the field of road extraction for the first time. Experiments are conducted via Gaofen-2 (GF-2) high-resolution remote sensing images with high vegetation coverage in the Daxing District of Beijing, China, and the public DeepGlobe dataset. The performance of MS-AGAN is compared with a list of advanced models, including RCFSNet, CoANet, UNet, DeepLabV3+, and DiResNet. The final results show that (1) with respect to road extraction performance, the Recall, F1, and IoU values of MS-AGAN on the Daxing dataset are 2.17%, 0.04%, and 2.63% higher than the baselines. On DeepGlobe, the Recall, F1, and IoU of MS-AGAN improve by 1.12%, 0.42%, and 0.25%, respectively. (2) On road connectivity, the Conn index of MS-AGAN from the Daxing dataset is 46.39%, with an improvement of 0.62% over the baselines, and the Conn index of MS-AGAN on DeepGlobe is 70.08%, holding an improvement of 1.73% over CoANet. The quantitative and qualitative analyses both demonstrate the superiority of MS-AGAN in preserving road connectivity. (3) In particular, the BER of MS-AGAN is 20.86% over the Daxing dataset with a 0.22% decrease compared to the best baselines and 11.77% on DeepGlobe with a 0.85% decrease compared to the best baselines. The proposed MS-AGAN provides an efficient, cost-effective, and reliable method for the dynamic updating of road networks via HRSIs.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3