Divergent Climate Sensitivities of the Alpine Grasslands to Early Growing Season Precipitation on the Tibetan Plateau

Author:

Wang ZhipengORCID,Zhang Xianzhou,Niu Ben,Zheng Yunpu,He Yongtao,Cao Yanan,Feng Yunfei,Wu JianshuangORCID

Abstract

Warming is expected to intensify hydrological processes and reshape precipitation regimes, which is closely related to water availability for terrestrial ecosystems. Effects of the inter-annual precipitation changes on plant growth are widely concerned. However, it is not well-known how plant growth responds to intra-annual precipitation regime changes. Here, we compiled reanalysis climate data (ERA5) and four satellite-based vegetation indices, including the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the Solar-induced Chlorophyll Fluorescence (SIF), and the Modified Triangular Vegetation Index (MTVI2), to evaluate the response of alpine grasslands (including alpine meadow and alpine steppe) to the change of precipitation regimes, especially to the intra-annual precipitation regimes on the Tibetan Plateau. We found monthly precipitation over the alpine steppe significantly increased in the growing season (May–September), but precipitation over the alpine meadow significantly increased only in the early growing season (May–June) (MJP) during the past four decades (1979–2019). The inter-annual plant growth (vegetation indices changes) on the alpine meadow was dominated by temperature, but it was driven by precipitation for the alpine steppe. On the intra-annual scale, the temperature sensitivity of the vegetation indices generally decreased but precipitation sensitivity increased during the growing season for both the alpine meadow and steppe. In response to the increase in MJP, we found the temperature sensitivity of the vegetation indices during the mid-growing season (July–August) (MGNDVI, MGEVI, MGSIF, and MGMTVI2) in the alpine meadow significantly increased (p < 0.01) while its precipitation sensitivity significantly decreased (p < 0.01). We infer that more MJP over the meadow may be the result of enhanced evapotranspiration, which is at the expense of soil moisture and even induces soil “drought” in the early growing season. This may be to elevate community water acquisition capacity through altering root mass allocation and community composition, consequently regulating the divergent climate sensitivities of vegetation growth in the mid-growing season. Our findings highlight that it is inadequate to regard precipitation as an indicator of water availability conditions for plant growth, which may limit our understanding of the response and acclimatization of plants to climate change.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3