Temperature Mediates the Dynamic of MODIS NPP in Alpine Grassland on the Tibetan Plateau, 2001–2019

Author:

Cui Jinxia,Wang Yanding,Zhou Tiancai,Jiang LiliORCID,Qi Qingwen

Abstract

Although alpine grassland net primary productivity (NPP) plays an important role in balancing the carbon cycle and is extremely vulnerable to climate factors, on the Tibetan Plateau, the generalized effect of climate factors on the NPP in areas with humid and arid conditions is still unknown. Hence, we determined the effects of precipitation and temperature on the MODIS NPP in alpine grassland areas from 2001 to 2019 according to information from humid and arid climatic regions. On a spatial scale, we found that temperature generated a larger effect on the NPP than precipitation did in humid regions, but as a primary factor, precipitation had an impact on the NPP in arid regions. These results suggest that temperature and precipitation are the primary limiting factors for plant growth in humid and arid regions. We also found that temperature produced a greater effect on the NPP in humid regions than in arid regions, but no significant differences were observed in the effects of precipitation on the NPP in humid and arid regions. In a time series (2001–2019), the effects of precipitation and temperature on the NPP presented fluctuating decrease (R2 = 0.28, p < 0.05) and increase (R2 = 0.24, p < 0.05) trends in arid regions. However, the effect of the climate on the NPP remained stable in humid regions. In both humid and arid regions, the dynamics of the NPP from 2001 to 2019 were mediated by an increase in temperature. Specifically, 35.9% and 2.57% of the dynamic NPP in humid regions and 45.1 and 7.53% of the dynamic NPP in arid regions were explained by variations in the temperature and precipitation, respectively. Our findings highlighted that grassland areas in humid regions can adapt to dynamic climates, but plants in arid regions are sensitive to changes in the climate. These findings can increase our understanding of climate and ecological responses and provide a framework for adapting management practices.

Funder

The Third Xinjiang Scientific Expedition

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3