Contrasting response mechanisms and ecological stress of net primary productivity in sub-humid to arid transition regions: a case study from the Loess Plateau, China

Author:

Wang Chunsheng,Zhang Rui,Chang Lili,Tian Qingjiu

Abstract

With the intensification of global change, the overall functions and structures of ecosystems in sub-humid to arid transition regions have changed to varying degrees. The Loess Plateau, as a typical case of such regions, plays a great role in the study of net primary productivity (NPP) for estimating the sustainability of the Earth’s carrying capacity in terrestrial ecosystem process monitoring. In the research on contrasting response mechanisms and ecological stress of NPP, the main innovations of this study are as follows. On the basis of the indicator system constructed from satellite imagery and meteorological data, we introduced deep multiple regressive models to reveal the relationship between NPP and the identified driving factors and then creatively proposed ecological stress (ES) evaluation models from the perspective of vegetation productivity. The findings are as follows: 1) From 2000 to 2019, the changes in driving factors presented a clear regional character, and the annual NPP maintained a fluctuating increasing trend (with a value of 4.57 g·m2·a−1). From the perspective of spatial distribution, the growth rate of NPP gradually increased from arid to sub-humid regions. 2) The effects of different driving factors on NPP changes and specific NPPs varied greatly across different regions. Arid and semi-arid regions were mainly controlled by precipitation (20.49%), temperature (15.21%), and other related factors, whereas sub-humid regions were mainly controlled by solar radiation, such as net surface solar radiation (NSSR) (8.71%) and surface effective radiation (SER) (7.93%). The main driving factors of NPP change varied under different soil conditions. 3) The spatio-temporal patterns of NPP approximated those of ES, but the effects of the latter significantly differed across ecological functional regions and land uses. This research on the Loess Plateau can serve as a valuable reference for future research on realizing ecosystem restoration and protection in sub-humid to arid transition regions.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3