Characteristics of Greening along Altitudinal Gradients on the Qinghai–Tibet Plateau Based on Time-Series Landsat Images

Author:

Pan YuhaoORCID,Wang Yan,Zheng Shijun,Huete Alfredo R.ORCID,Shen Miaogen,Zhang XiaoyangORCID,Huang JingfengORCID,He Guojin,Yu LeORCID,Xu Xiyan,Xie QiaoyunORCID,Peng Dailiang

Abstract

The Qinghai–Tibet Plateau (QTP) is ecologically fragile and is especially sensitive to climate change. Previous studies have shown that the vegetation on the QTP is undergoing overall greening with variations along altitudinal gradients. However, the mechanisms that cause the differences in the spatiotemporal patterns of vegetation greening among different types of terrain and vegetation have not received sufficient attention. Therefore, in this study, we used a Landsat NDVI time-series for the period 1992–2020 and climate data to observe the effects of terrain and vegetation types on the spatiotemporal patterns in vegetation greening on the QTP and to analyze the factors driving this greening using the geographical detector and the velocity of the vertical movement of vegetation greenness isolines. The results showed the following: (1) The vertical movement of the vegetation greenness isolines was affected by the temperature and precipitation at all elevations. The precipitation had a more substantial effect than the temperature below 3000 m. In contrast, above 3000 m, the temperature had a greater effect than the precipitation. (2) The velocity of the vertical movement of the vegetation greenness isolines of woody plants was higher than that of herbaceous plants. (3) The influence of slope on the vertical movement of vegetation greenness isolines was more significant than that of the aspect. The results of this study provided details of the spatiotemporal differences in vegetation greening between different types of terrain and vegetation at a 30-m scale as well as of the underlying factors driving this greening. These results will help to support ecological protection policies on the QTP.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3