Affiliation:
1. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
3. School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan 056038, China
4. School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
Abstract
As a climate-sensitive region of the Tibetan Plateau, the source regions of the Yangtze and Yellow Rivers (SRYYRs) urgently require an analysis of land cover change (LUCCs) over a long period, high temporal resolution, and high spatial resolution. This study utilizes nearly 40 years of land cover, the Normalized Difference Vegetation Index (NDVI), climate, and geomorphological data, applying methods including a land transfer matrix, slope trend analysis, correlation analysis, and landscape pattern indices to analyze the spatial and temporal changes, composition, layout, and quality of the local land cover and the factors. The findings reveal that (1) the land cover area change rate was 8.96% over the past 40 years, the unutilized land area decreased by 24.49%, and the grassland area increased by 6.37%. The changes were obvious at the junction of the two source regions and the southeast side of the source region of the Yellow River. (2) the landscape pattern was more centralized and diversified. The number of low-cover grassland patches increased by 12.92%. (3) The region is still dominated by medium- and low-cover vegetation, with the mean annual NDVI increasing at a rate of 0.006/10a, and the rate of change after 2000 is three times higher than previously. (4) The degree of land cover change is greater in the middle altitudes, semisunny aspects, steepest slopes, and middle-relief mountains. Additionally, 76.8% of the region’s vegetation growth is dominated by mean annual temperatures. This study provides fundamental data and theory for understanding LUCCs and the driving factors in alpine plateau regions.
Funder
National Key Research and Development Program of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献