Research on Chemical Mechanical Polishing Technology for Zirconium-Based Amorphous Alloys

Author:

Hang Wei1ORCID,Song Chao12,Yin Ziliang2,Liu Ye2,Wang Qifan23,Wang Yinggang1,Ma Yi4,Zeng Qiaoshi2ORCID

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China

2. Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China

3. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China

4. Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China

Abstract

Crystallization often occurs in the processing of amorphous alloys, causing the materials lose their excellent properties. The study adopts chemical mechanical polishing of amorphous alloys, presenting the effect of the rotational speed of the polishing turntable, size of abrasive, polishing pressure, and oxidant concentration. The Taguchi method is used to find the best processing parameters, and AFM is used to characterize the machined material surface. At the same time, XPS is used to detect the change of oxide film composition with the addition of oxidant. The results indicate the optimum process parameters: rotational speed of the polishing turntable is 75 r/min, polishing pressure is 28.3 kPa, the size of abrasive is 0.5 μm, and the size of abrasive is a significant factor affecting surface roughness Sa. In addition, as the size of abrasive increases, the material removal rate increases while the surface roughness Sa increases. At pH 10, with an abrasive particle size of 0.5 μm, as the H2O2 concentration increases, the MRR first rapidly decreases at 0.21 wt.% H2O2, and then gradually increases, while the Sa decreases. Furthermore, with the addition of oxidant, the main composition of the surface oxide film changes from oxide to hydroxide, and the contents of Zr4+ and Cu0/Cu1+ elements increase. The findings can provide a feasible chemical mechanical polishing process for zirconium-based amorphous alloys to obtain a satisfactory polishing effect.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3