Geolocation and Tracking by TDOA Measurements Based on Space–Air–Ground Integrated Network

Author:

Li Jinzhou,Lv Shouye,Jin Ying,Wang Chenglin,Liu Yang,Liao Shuai

Abstract

Due to the development of manufacturing and launch technologies for satellites, there are now more and more satellite networks. Hence, cooperative reconnaissance is possible to implement among satellite networks, aerial vehicles and ground stations. In this paper, we study the method of geolocation and tracking by time difference of arrival (TDOA) measurements based on space–air–ground integrated (SAGI) network. We first analyze the Cramer Rao lower bound (CRLB) for the source localization accuracy in different coordinate systems. Then, we compare the effects of different system errors, such as clock synchronization error, position bias of the observers, elevation bias of the target and non-horizontal velocity of the target. Further, we also develop a maximum likelihood (ML) estimator for target position and velocity. Finally, the theoretical performance of the proposed estimator is validated via computer simulations.

Funder

National Defense Science Foundation for Distinguished Young Scholars

Young Elite Scientists Sponsorship Program by CAST

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced Combined Weighted Method for TDOA-Based Localization;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20

2. Fast and Fault-Tolerant Passive Hyperbolic Localization Using Sensor Consensus;Sensors;2024-04-30

3. Passive TDOA Emitter Localization Using Fast Hyperbolic Hough Transform;Applied Sciences;2023-12-16

4. Localization of GNSS Spoofing Interference Source Based on a Moving Array Antenna;Remote Sensing;2023-11-25

5. Hybrid technique to predict the position of Vehicle;VFAST Transactions on Software Engineering;2022-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3