Localization of GNSS Spoofing Interference Source Based on a Moving Array Antenna

Author:

Liu Rui12,Yang Zhiwei1,Chen Qidong12,Liao Guisheng1,Zhu Qinglin2

Affiliation:

1. National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710000, China

2. China Research Institute of Radiowave Propagation, Qingdao 266000, China

Abstract

GNSS spoofing interference utilizes falsified navigation signals to launch attacks on GNSS systems, posing a significant threat to applications that rely on GNSS signals for positioning, navigation, and time services. Therefore, achieving effective localization of the sources causing spoofing interference is crucial in ensuring the secure operation of GNSS. This article proposes a method for locating GNSS spoofing interference sources using a moving array antenna. Firstly, the proposed method utilizes the inherent characteristics of the double-differenced carrier phase from the deception signals received by the array antenna to effectively extract the spoofing signals. Subsequently, by moving the antenna array, the original carrier phase single-difference data of multiple observation points for deception signals are fused to provide a cost function for direct localization of spoofing interference, and a solution method for the cost function is designed. The proposed method addresses the challenge of extracting and localizing GNSS spoofing interference weak signals, effectively avoiding the data correlation of traditional two-step methods for DOA estimation parameters and ensuring the location accuracy of spoofing interference and the robustness of the method. The effectiveness of the proposed method has been validated through simulation experiments, and its adaptability to factors such as errors in carrier phase measurements has been examined. The method exhibits strong applicability and is well-suited for the hardware platform of the GNSS nulling antenna, thereby enabling it to possess simultaneous capabilities in both anti-interference and spoofing interference localization.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3