Detecting Woody Plants in Southern Arizona Using Data from the National Ecological Observatory Network (NEON)

Author:

Hutsler Thomas,Pricope Narcisa G.ORCID,Gao Peng,Rother Monica T.ORCID

Abstract

Land cover changes and conversions are occurring rapidly in response to human activities throughout the world. Woody plant encroachment (WPE) is a type of land cover conversion that involves the proliferation and/or densification of woody plants in an ecosystem. WPE is especially prevalent in drylands, where subtle changes in precipitation and disturbance regimes can have dramatic effects on vegetation structure and degrade ecosystem functions and services. Accurately determining the distribution of woody plants in drylands is critical for protecting human and natural resources through woody plant management strategies. Using an object-based approach, we have used novel open-source remote sensing and in situ data from Santa Rita Experimental Range (SRER), National Ecological Observatory Network (NEON), Arizona, USA with machine learning algorithms and tested each model’s efficacy for estimating fractional woody cover (FWC) to quantify woody plant extent. Model performance was compared using standard model assessment metrics such as accuracy, sensitivity, specificity, and runtime to assess model variables and hyperparameters. We found that decision tree-based models with a binary classification scheme performed best, with sequential models (Boosting) slightly outperforming independent models (Random Forest) for both object classification and FWC estimates. Mean canopy height and mean, median, and maximum statistics for all vegetation indices were found to have highest variable importance. Optimal model hyperparameters and potential limitations of the NEON dataset for classifying woody plants in dryland regions were also identified. Overall, this study lays the groundwork for developing machine learning models for dryland woody plant management using solely NEON data.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference39 articles.

1. Expansion of Global Drylands under a Warming Climate;Feng;Atmos. Chem. Phys.,2013

2. Gaughan, A.E., Kolarik, N.E., Stevens, F.R., Pricope, N.G., Cassidy, L., Salerno, J., Bailey, K.M., Drake, M., Woodward, K., and Hartter, J. (2022). Using Very-High-Resolution Multispectral Classification to Estimate Savanna Fractional Vegetation Components. Remote Sens., 14.

3. Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., and van Diemen, R. (2019). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, Intergovernmental Panel on Climate Change.

4. Briske, D.D. (2017). Rangeland Systems, Springer International Publishing.

5. How Tree Encroachment and Soil Properties Affect Soil Aggregate Stability in an Eroded Grassland in South Africa;Podwojewski;Soil Sci. Soc. Am. J.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3