Precipitable Water Vapor Retrieval Based on DPC Onboard GaoFen-5 (02) Satellite

Author:

Wang Chao,Shi Zheng,Xie YanqingORCID,Luo Donggen,Li ZhengqiangORCID,Wang Decheng,Chen Xiangning

Abstract

GaoFen-5 (02) (GF5-02) is a new Chinese operational satellite that was launched on 7 September 2021. The Directional Polarimetric Camera (DPC) is one of the main payloads and is mainly used for the remote sensing monitoring of atmospheric components such as aerosols and water vapor. At present, the DPC is in the stage of on-orbit testing, and no public DPC precipitable water vapor (PWV) data are available. In this study, a PWV retrieval algorithm based on the spectral characteristics of DPC data is developed. The algorithm consists of three parts: (1) the construction of the lookup table, (2) the calculation of water vapor absorption transmittance (WVAT) in the band at 910 nm, and (3) DPC PWV retrieval. The global PWV results derived from DPC data are spatially continuous, which can illustrate the global distribution of water vapor content well. The validation based on the Aerosol Robotic Network (AERONET) PWV data shows that the DPC PWV data have accuracy similar to that of Moderate-resolution Imaging Spectroradiometer (MODIS) PWV data, with coefficient correlation of determination (R2), mean absolute error (MAE), and relative error (RE) of 0.32, 0.30, and 0.93 using the DPC and 0.23, 0.36, and 0.96 using the MODIS, respectively. The results show that our proposed DPC PWV retrieval algorithm is feasible and has high accuracy. By analyzing the errors, we found that the calibration coefficients of the DPC in the 865 nm and 910 nm bands need to be updated.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

National Outstanding Youth Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference38 articles.

1. Water Vapor Feedback and Global Warming;Held;Annu. Rev. Energy Environ.,2000

2. Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming;Solomon;Science,2010

3. Atmospheric river linked to extreme rainfall events over Kerala in August 2018;Lyngwa;Atmos. Res.,2021

4. Extreme rainfall in New Zealand and its association with Atmospheric Rivers;Reid;Environ. Res. Lett.,2021

5. Aerosol Optical Depth Retrieval Over South Asia Using FY-4A/AGRI Data;Xie;IEEE Trans. Geosci. Remote Sens.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3