Abstract
Background: Yttria-stabilized zirconia nanoparticles can be applied as fillers to improve the mechanical and antibacterial properties of luting cement. The aim of this study was to synthesize yttria-stabilized zirconia nanoparticles by the sol–gel method and to investigate their composition, structure, morphology and biological properties. Methods: Nanopowders of ZrO2 7 wt% Y2O3 (nY-ZrO) were synthesized by the sol–gel method and were sintered at three different temperatures: 800, 1000 and 1200 °C, and their composition, size and morphology were investigated. The biocompatibility was investigated with human gingival fibroblasts (hGFs), while reactive oxygen species (ROS) production was evaluated through fluorescence analysis. Results: All synthesized materials were composed of tetragonal zirconia, while nanopowders sintered at 800 °C and 1000 °C additionally contained 5 and 20 wt% of the cubic phase. By increasing the calcination temperature, the crystalline size of the nanoparticles increased from 12.1 nm for nY-ZrO800 to 47.2 nm for nY-ZrO1200. Nano-sized particles with good dispersion and low agglomeration were received. Cell culture studies with human gingival fibroblasts verified the nanopowders’ biocompatibility and their ROS scavenging activity. Conclusions: the obtained sol–gel derived nanopowders showed suitable properties to be potentially used as nanofillers for dental luting cement.
Reference101 articles.
1. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications
2. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic;Vagkopoulou;Eur. J. Esthet. Dent.,2009
3. Zirconia in dentistry: Part 2. Evidence-based clinical breakthrough;Koutayas;Eur. J. Esthet. Dent.,2009
4. Inorganic Fillers for Dental Resin Composites: Present and Future
5. A novel zirconia fibre-reinforced resin composite for dental use
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献