Author:
Kudryavtseva Natalia,Havey Michael J.,Black Lowell,Hanson Peter,Sokolov Pavel,Odintsov Sergey,Divashuk Mikhail,Khrustaleva Ludmila
Abstract
Interspecific crossing is a promising approach for introgression of valuable traits to develop cultivars with improved characteristics. Allium fistulosum L. possesses numerous pest resistances that are lacking in the bulb onion (Allium cepa L.), including resistance to Stemphylium leaf blight (SLB). Advanced generations were produced by selfing and backcrossing to bulb onions of interspecific hybrids between A. cepa and A. fistulosum that showed resistance to SLB. Molecular classification of the cytoplasm established that all generations possessed normal (N) male−fertile cytoplasm of bulb onions. Genomic in situ hybridization (GISH) was used to study the chromosomal composition of the advanced generations and showed that most plants were allotetraploids possessing the complete diploid sets of both parental species. Because artificial doubling of chromosomes of the interspecific hybrids was not used, spontaneous polyploidization likely resulted from restitution gametes or somatic doubling. Recombinant chromosomes between A. cepa and A. fistulosum were identified, revealing that introgression of disease resistances to bulb onion should be possible.
Funder
Russian Science Foundation
Subject
Genetics(clinical),Genetics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献