Design Optimization of Electrical Structure Parameters of Induction Asynchronous Mechanical–Electric–Hydraulic Power Coupler

Author:

Wang Junyi1,Zhang Tiezhu1,Zhang Hongxin1,Zhang Zhen1ORCID,Chen Hao1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China

Abstract

In response to the problems of considerable size, loose structure, and low energy conversion efficiency of multi-energy power coupling devices, this paper makes improvements based on the mechanical–electric–hydraulic power coupler proposed by our research group. We propose a new asynchronous mechanical–electric–hydraulic power coupler (IA-MEHPC). This mechanism integrates a traditional three-phase asynchronous motor with a swashplate axial piston pump/motor to realize the mutual conversion of electrical, mechanical, and hydraulic energy. Compactness, efficiency, and adaptability are the distinguishing features of the complex. This paper builds a three-dimensional model of the IA-MEHPC and a two-dimensional theoretical model of the electrical structure (motor part). Moreover, the electrical structure parameters of the IA-MEHPC are optimized using an approximate response surface-based optimization method. The maximum motor peak torque and minimum torque fluctuation are identified as optimization objectives, and we obtain the optimal combination of parameters. The simulation results show that, compared to the pre-optimized structure, the peak motor torque of the optimized IA-MEHPC is increased by 5.78%, and the torque pulsation coefficient is reduced by 15.83%, in line with engineering practice expectations. This paper innovatively proposes and optimizes IA-MEHPC, which is significant for developing hybrid mechanical devices and subsequent research.

Funder

National Natural Science Foundation of China

Municipal Livelihood Science and Technology Project of Qingdao

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3