Research on the Starting Acceleration Characteristics of a New Mechanical–Electric–Hydraulic Power Coupling Electric Vehicle

Author:

Yang Jian,Zhang Tiezhu,Zhang Hongxin,Hong Jichao,Meng Zewen

Abstract

To simplify the layout of a purely electric vehicle transmission system and improve the acceleration performance of the vehicle, this paper utilizes the characteristics of the large torque of a hydraulic transmission system and proposes a new mechanical–electric–hydraulic dynamic coupling drive system (MEH-DCDS). It integrates the traditional motor and the swashplate hydraulic pump/motor into one, which can realize the mutual conversion between the mechanical energy, electrical energy, and hydraulic energy. This article explains its working principle and structural characteristics. At the same time, the mathematical model for the key components is established and the operation mode is divided into various types. Based on AMESim software, the article studies the dynamic characteristics of the MEH-DCDS, and finally proposes a method that combines real-time feedback of the accumulator output torque with PID control to complete the system simulation. The results show that the MEH-DCDS vehicle has a starting time of 4.52 s at ignition, and the starting performance is improved by 40.37% compared to that of a pure motor drive system vehicle; after a PID adjustment, the MEH-DCDS vehicle’s starting time is shortened by 1.04 s, and the acceleration performance is improved by 23.01%. The results indicated the feasibility of the system and the power performance was substantially improved. Finally, the system is integrated into the vehicle and the dynamic performance of the MEH-DCDS under cycle conditions is verified by joint simulation. The results show that the vehicle is able to follow the control speed well when the MEH-DCDS is loaded on the vehicle. The state-of-charge (SOC) consumption rate is reduced by 20.33% compared to an electric vehicle, while the MEH-DCDS has an increased range of 45.7 m compared to the EV. This improves the energy efficiency and increases the driving range.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3