Author:
Hu Shiyuan,Gao Jinliang,Zhong Dan,Deng Liqun,Ou Chenhao,Xin Ping
Abstract
Accurate forecasting of hourly water demand is essential for effective and sustainable operation, and the cost-effective management of water distribution networks. Unlike monthly or yearly water demand, hourly water demand has more fluctuations and is easily affected by short-term abnormal events. An effective preprocessing method is needed to capture the hourly water demand patterns and eliminate the interference of abnormal data. In this study, an innovative preprocessing framework, including a novel local outlier detection and correction method Isolation Forest (IF), an adaptive signal decomposition technique Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), and basic forecasting models have been developed. In order to compare a promising deep learning method Gated Recurrent Unit (GRU) as a basic forecasting model with the conventional forecasting models, Support Vector Regression (SVR) and Artificial Neural Network (ANN) have been used. The results show that the proposed hybrid method can utilize the complementary advantages of the preprocessing methods to improve the accuracy of the forecasting models. The root-mean-square error of the SVR, ANN, and GRU models has been reduced by 57.5%, 27.8%, and 30.0%, respectively. Further, the GRU-based models developed in this study are superior to the other models, and the IF-CEEMDAN-GRU model has the highest accuracy. Hence, it is promising that this preprocessing framework can improve the performance of the water demand forecasting models.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Natural Science Foundation of Heilongjiang Province
Science and Technology Program of Shenzhen of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献