An Innovative Hourly Water Demand Forecasting Preprocessing Framework with Local Outlier Correction and Adaptive Decomposition Techniques

Author:

Hu Shiyuan,Gao Jinliang,Zhong Dan,Deng Liqun,Ou Chenhao,Xin Ping

Abstract

Accurate forecasting of hourly water demand is essential for effective and sustainable operation, and the cost-effective management of water distribution networks. Unlike monthly or yearly water demand, hourly water demand has more fluctuations and is easily affected by short-term abnormal events. An effective preprocessing method is needed to capture the hourly water demand patterns and eliminate the interference of abnormal data. In this study, an innovative preprocessing framework, including a novel local outlier detection and correction method Isolation Forest (IF), an adaptive signal decomposition technique Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), and basic forecasting models have been developed. In order to compare a promising deep learning method Gated Recurrent Unit (GRU) as a basic forecasting model with the conventional forecasting models, Support Vector Regression (SVR) and Artificial Neural Network (ANN) have been used. The results show that the proposed hybrid method can utilize the complementary advantages of the preprocessing methods to improve the accuracy of the forecasting models. The root-mean-square error of the SVR, ANN, and GRU models has been reduced by 57.5%, 27.8%, and 30.0%, respectively. Further, the GRU-based models developed in this study are superior to the other models, and the IF-CEEMDAN-GRU model has the highest accuracy. Hence, it is promising that this preprocessing framework can improve the performance of the water demand forecasting models.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Heilongjiang Province

Science and Technology Program of Shenzhen of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3