Analysis of the Acoustic Transcranial Bone Conduction

Author:

Dufour-Fournier Catherine,Devèze Arnaud,Barbut JonathanORCID,Ogam ErickORCID,Saliba IssamORCID,Masson Catherine

Abstract

Objectives: (1) To analyze the preferential pathways of sound transmission and sound waves travelling properties in the skull and (2) to identify the location(s) on the skull where bone conduction to the cochlea is optimal. Study design: Basic research Methods: Nine cadaveric heads were placed in an anechoic chamber and equipped with six Bone Anchored Hearing Aids (BAHA™) implants (Cochlear™, Sydney, NSW, Australia) and fifteen accelerometers. A laser velocimeter was used to measure cochlear response by placing a reflector on the round window. Different frequency sweeps were applied to each implant, and measurements were recorded simultaneously by the laser velocimeter and accelerometers. Results: Low-frequency sound waves mostly travel the frontal transmission pathways, and there is no clear predominant pattern for the high frequencies. The mean inter-aural time lag is 0.1 ms. Optimal sound transmission to the cochlea occurs between 1000 and 2500 Hz with a contralateral 5 to 10 dB attenuation. The implant location does not influence mean transmission to the cochlea. Conclusion: There is a pattern of transmission for low frequencies through a frontal pathway but none for high frequencies. We were also able to demonstrate that the localization of the BAHA™ implant on the skull had no significant impact on the sound transmission, either ipsi or contralaterally.

Publisher

MDPI AG

Subject

Otorhinolaryngology

Reference16 articles.

1. Middle ear mechanics in normal, diseased and reconstructed ears

2. Early history of tuning-fork tests;Ng;Am. J. Otol.,1993

3. Ten Years of Experience with the Swedish Bone-Anchored Hearing System

4. Acoustic and Physiologic Aspects of Bone Conduction Hearing;Stenfelt;Adv. Otorhinolaryngol.,2011

5. A cochlear-bone wave can yield a hearing sensation as well as otoacoustic emission

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3