Middle ear mechanics in normal, diseased and reconstructed ears

Author:

Merchant Saumil N.,Ravicz Michael E.,Voss Susan E.,Peake William T.,Rosowski John J.

Abstract

AbstractA review of the structure-function relationships in normal, diseased and reconstructed middle ears is presented. Variables used to describe the system are sound pressure, volume velocity and acoustic impedance. We discuss the following(1) Sound can be transmitted from the ear canal to the cochlea via two mechanisms: the tympanoossicular system (ossicular coupling) and direct acoustic stimulation of the oval and round windows (acoustic coupling). In the normal ear, middle-ear pressure gain, which is the result of ossicular coupling, is frequency-dependent and smaller than generally believed. Acoustic coupling is negligibly small in normal ears, but can play a significant role in some diseased and reconstructed ears.(2) The severity of conductive hearing loss due to middle-ear disease or after tympanoplasty surgery can be predicted by the degree to which ossicular coupling, acoustic coupling, and stapes-cochlear input impedance are compromised. Such analyses are used to explain the air-bone gaps associated with lesions such as ossicular interruption, ossicular fixation and tympanic membrane perforation.(3) With type IV and V tympanoplasty, hearing is determined solely by acoustic coupling. A quantitative analysis of structure-function relationships can both explain the wide range of observed postoperative hearing results and suggest surgical guidelines in order to optimize the post-operative results.(4) In tympanoplasty types I, II and III, the hearing result depends on the efficacy of the reconstructed tympanic membrane, the efficacy of the reconstructed ossicular chain and adequacy of middle-ear aeration. Currently, our knowledge of the mechanics of these three factors is incomplete. The mechanics of mastoidectomy and stapedectomy are also discussed.

Publisher

Cambridge University Press (CUP)

Subject

Otorhinolaryngology,General Medicine

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3