Hybrid Deep Learning Algorithm with Open Innovation Perspective: A Prediction Model of Asthmatic Occurrence

Author:

Kim Min-SeungORCID,Lee Jeong-HeeORCID,Jang Yong-Ju,Lee Chan-Ho,Choi Ji-Hye,Sung Tae-EungORCID

Abstract

Due to recent advancements in industrialization, climate change and overpopulation, air pollution has become an issue of global concern and air quality is being highlighted as a social issue. Public interest and concern over respiratory health are increasing in terms of a high reliability of a healthy life or the social sustainability of human beings. Air pollution can have various adverse or deleterious effects on human health. Respiratory diseases such as asthma, the subject of this study, are especially regarded as ‘directly affected’ by air pollution. Since such pollution is derived from the combined effects of atmospheric pollutants and meteorological environmental factors, and it is not easy to estimate its influence on feasible respiratory diseases in various atmospheric environments. Previous studies have used clinical and cohort data based on relatively a small number of samples to determine how atmospheric pollutants affect diseases such as asthma. This has significant limitations in that each sample of the collections is likely to produce inconsistent results and it is difficult to attempt the experiments and studies other than by those in the medical profession. This study mainly focuses on predicting the actual asthmatic occurrence while utilizing and analyzing the data on both the atmospheric and meteorological environment officially released by the government. We used one of the advanced analytic models, often referred to as the vector autoregressive model (VAR), which traditionally has an advantage in multivariate time-series analysis to verify that each variable has a significant causal effect on the asthmatic occurrence. Next, the VAR model was applied to a deep learning algorithm to find a prediction model optimized for the prediction of asthmatic occurrence. The average error rate of the hybrid deep neural network (DNN) model was numerically verified to be about 8.17%, indicating better performance than other time-series algorithms. The proposed model can help streamline the national health and medical insurance system and health budget management in South Korea much more effectively. It can also provide efficiency in the deployment and management of the supply and demand of medical personnel in hospitals. In addition, it can contribute to the promotion of national health, enabling advance alerts of the risk of outbreaks by the atmospheric environment for chronic asthma patients. Furthermore, the theoretical methodologies, experimental results and implications of this study will be able to contribute to our current issues of global change and development in that the meteorological and environmental data-driven, deep-learning prediction model proposed hereby would put forward a macroscopic directionality which leads to sustainable public health and sustainability science.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference71 articles.

1. Cross-sectional Study on Respiratory Symptoms due to Air Pollution Using a Questionnaire;Kwon;Korea J. Prev. Med.,1994

2. A Cluster Analysis on the Risk of Particulate Matter Focusing on Differences of Risk-Related Behaviors based on Public Segmentation;Lee;J. Public Relat. Res.,2016

3. Air Pollution and Health;Bert;The Lancet,2002

4. Air Pollution: From Lung to Heart;Nino;Swiss Med. Wkly.,2005

5. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution;Pope;J. Am. Med. Assoc.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3