Machine Learning Application in Reservoir Water Level Forecasting for Sustainable Hydropower Generation Strategy

Author:

Sapitang Michelle,M. Ridwan Wanie,Faizal Kushiar Khairul,Najah Ahmed AliORCID,El-Shafie AhmedORCID

Abstract

The aim of this study is to accurately forecast the changes in water level of a reservoir located in Malaysia with two different scenarios; Scenario 1 (SC1) includes rainfall and water level as input and Scenario 2 (SC2) includes rainfall, water level, and sent out. Different time horizons (one day ahead to seven days) will be investigated to check the accuracy of the proposed models. In this study, four supervised machine learning algorithms for both scenarios were proposed such as Boosted Decision Tree Regression (BDTR), Decision Forest Regression (DFR), Bayesian Linear Regression (BLR) and Neural Network Regression (NNR). Eighty percent of the total data were used for training the datasets while 20% for the dataset used for testing. The models’ performance is evaluated using five statistical indexes; the Correlation Coefficient (R2), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE), and Relative Squared Error (RSE). The findings showed that among the four proposed models, the BLR model outperformed other models with R2 0.998952 (1-day ahead) for SC1 and BDTR for SC2 with R2 0.99992 (1-day ahead). With regards to the uncertainty analysis, 95PPU and d-factors were adopted to measure the uncertainties of the best models (BLR and BDTR). The results showed the value of 95PPU for both models in both scenarios (SC1 and SC2) fall into the range between 80% to 100%. As for the d-factor, all values in SC1 and SC2 fall below one.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference43 articles.

1. Neural network application in reservoir water level forecasting and release decision;Hu Hussain;Int. J. New Comput. Archit. Appl.,2011

2. Reservoir water level forecasting using group method of data handling

3. Machine Learning: An Applied Econometric Approach

4. Machine Learning: The New AI;Alpaydin,2016

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3