Abstract
This paper presents a novel framework to enable automatic re-training of the supervisory powertrain control strategy for hybrid electric vehicles using supervised machine learning. The aim of re-training is to customize the control strategy to a user-specific driving behavior without human intervention. The framework is designed to update the control strategy at the end of a driving task. A combination of dynamic programming and supervised machine learning is used to train the control strategy. The trained control strategy denoted as SML is compared to an online-implementable strategy based on the combination of the optimal operation line and Pontryagin’s minimum principle denoted as OOL-PMP, on the basis of fuel consumption. SML consistently performed better than OOL-PMP, evaluated over five standard drive cycles. The EUDC performance was almost identical while on FTP75 the OOL-PMP consumed 14.7% more fuel than SML. Moreover, the deviation from the global benchmark obtained from dynamic programming was between 1.8% and 5.4% for SML and between 5.8% and 16.8% for OOL-PMP. Furthermore, a test-case was conducted to emulate a real-world driving scenario wherein a trained controller is exposed to a new drive cycle. It is found that the performance on the new drive cycle deviates significantly from the optimal policy; however, this performance gap is bridged with a single re-training episode for the respective test-case.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献