Conceptual Study on Car Acceleration Strategies to Minimize Travel Time, Fuel Consumption, and CO2-CO Emissions

Author:

Acosta Olivia1,Sastre Francisco1ORCID,Arias Juan Ramón1,Velazquez Ángel1

Affiliation:

1. Fluid Mechanics and Aerospace Propulsion Department, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Abstract

A conceptual study was performed on intelligent driving acceleration strategies for vehicles equipped with internal combustion engines. Two archetypal acceleration scenarios of highway driving and urban driving were prescribed. Three trajectories were considered for each scenario. They involved (a) nearly constant acceleration, (b) fast acceleration first and slow acceleration later, and (c) slow acceleration first and fast acceleration later. The selected vehicle was a generic European small–medium passenger car. Engine inlet pressure and ignition time were optimized along each trajectory to minimize fuel consumption, CO, and CO2 emissions, and travel time. The optimization process involved a methodological approach based on the higher-order singular value decomposition of the tensor form of the engine model. The optimized trajectories were analyzed and compared among themselves. Conceptual acceleration design guidelines for intelligent driving were provided that could be of interest when integrating vehicle/engine performance into the surrounding traffic flow.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3