Path Planning for Perpendicular Parking of Large Articulated Vehicles Based on Qualitative Kinematics and Geometric Methods

Author:

Han Inhwan1ORCID

Affiliation:

1. Department of Mechanical and Design Engineering, Hongik University, Sejong 30016, Republic of Korea

Abstract

Since large articulated vehicles have uncertainties in trailer articulation angle as well as dynamic complexity, it is not easy to accurately establish a reliable motion plan. In this paper, two geometric path plans constructed based on the empirical rules of driving experts are presented so that articulated vehicles can automatically perform perpendicular parking on a reverse path. By analyzing the empirical parking methods of professional drivers, these path plans were constructed by appropriately combining several standardized simple basic motions to facilitate implementation in real vehicles. In addition, the path plans included appropriate complementary motions to effectively respond to uncertainties arising from articulation angles, etc. The complementary motions developed in this study are based on the results of qualitative analysis on the behavior of articulated vehicles. The usefulness of the proposed articulated vehicle parking method has been proven through hundreds of experimental tests using a scaled model automated vehicle.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Offset backing path planning of tractor-semitrailer vehicles based on qualitative rules and geometric methods considering uncertainties;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-01-11

2. Soft Computing-Based Driver Modeling for Automatic Parking of Articulated Heavy Vehicles;SAE International Journal of Commercial Vehicles;2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3