Radar-Based Pedestrian and Vehicle Detection and Identification for Driving Assistance

Author:

Viadero-Monasterio Fernando1ORCID,Alonso-Rentería Luciano2ORCID,Pérez-Oria Juan2,Viadero-Rueda Fernando3ORCID

Affiliation:

1. Mechanical Engineering Department, Advanced Vehicle Dynamics and Mechatronic Systems (VEDYMEC), Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain

2. Control Engineering Group, Universidad de Cantabria, 39005 Santander, Spain

3. Structural and Mechanical Engineering Department, Universidad de Cantabria, 39005 Santander, Spain

Abstract

The introduction of advanced driver assistance systems has significantly reduced vehicle accidents by providing crucial support for high-speed driving and alerting drivers to imminent dangers. Despite these advancements, current systems still depend on the driver’s ability to respond to warnings effectively. To address this limitation, this research focused on developing a neural network model for the automatic detection and classification of objects in front of a vehicle, including pedestrians and other vehicles, using radar technology. Radar sensors were employed to detect objects by measuring the distance to the object and analyzing the power of the reflected signals to determine the type of object detected. Experimental tests were conducted to evaluate the performance of the radar-based system under various driving conditions, assessing its accuracy in detecting and classifying different objects. The proposed neural network model achieved a high accuracy rate, correctly identifying approximately 91% of objects in the test scenarios. The results demonstrate that this model can be used to inform drivers of potential hazards or to initiate autonomous braking and steering maneuvers to prevent collisions. This research contributes to the development of more effective safety features for vehicles, enhancing the overall effectiveness of driver assistance systems and paving the way for future advancements in autonomous driving technology.

Funder

Madrid Government

V PRICIT

MDPI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3