The Sensitivity in Consumption of Different Vehicle Drivetrain Concepts Under Varying Operating Conditions: A Simulative Data Driven Approach

Author:

Jardin Philippe,Esser Arved,Givone Stefano,Eichenlaub Tobias,Schleiffer Jean-Eric,Rinderknecht Stephan

Abstract

As an important aspect of today’s efforts to reduce greenhouse gas emissions, the energy demand of passenger cars is a subject of research. Different drivetrain concepts like plug-in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV) are introduced into the market in addition to conventional internal combustion engine vehicles (ICEV) to address this issue. However, the consumption highly depends on individual usage profiles and external operating conditions, especially when considering secondary energy demands like heating, ventilation and air conditioning (HVAC). The approach presented in this work aims to estimate vehicle consumptions based on real world driving profiles and weather data under consideration of secondary demands. For this purpose, a primary and a secondary consumption model are developed that interact with each other to estimate realistic vehicle consumptions for different drivetrain concepts. The models are parametrized by referring to state of the art contributions and the results are made plausible by comparison to literature. The sensitivities of the consumptions are then analysed as a function of trip distance and ambient temperature to assess the influence of the operating conditions on the consumption. The results show that especially in the case of the BEV and PHEV, the trip distance and the ambient temperature are a first-order influencing factor on the total vehicle energy demand. Thus, it is not sufficient to evaluate new vehicle concepts solely on one-dimensional driving cycles to assess their energy demand. Instead, the external conditions must be taken into account for a proper assessment of the vehicle’s real world consumption.

Publisher

MDPI AG

Reference25 articles.

1. Comission Regulation (EU), 2017 (2017/1151) https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32017R1151

2. Dynamik der Kraftfahrzeuge;Mitschke,2014

3. Performance Fuel Economy and CO2 Prediction of a Vehicle using AVL Cruise Simulation Techniques;Srinivasan;SAE Int.,2009

4. An Integrated Approach for Air Conditioning and Electrical System Impact on Vehicle Fuel Consumption and Performances Analysis: DrivEM 1.0;Orofino;SAE Trans. J. Passeng. Cars Mech. Sys. J.,2007

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3