Hybrid LSTM + 1DCNN Approach to Forecasting Torque Internal Combustion Engines

Author:

Ricci Federico1ORCID,Petrucci Luca1ORCID,Mariani Francesco1ORCID

Affiliation:

1. Engineering Department, University of Perugia, Via Goffredo Duranti 93, 06125 Perugia, Italy

Abstract

Innovative solutions are now being researched to manage the ever-increasing amount of data required to optimize the performance of internal combustion engines. Machine learning approaches have shown to be a valuable tool for signal prediction due to their real-time and cost-effective deployment. Among them, the architecture consisting of long short-term memory (LSTM) and one-dimensional convolutional neural networks (1DCNNs) has emerged as a highly promising and effective option to replace physical sensors. This architecture combines the capacity of LSTM to detect patterns and relationships in smaller segments of a signal with the ability of 1DCNNs to detect patterns and relationships in larger segments of a signal. The purpose of this work is to assess the feasibility of substituting a physical device dedicated to calculating the torque supplied by a spark-ignition engine. The suggested architecture was trained and tested using signals from the field during a test campaign conducted under transient operating conditions. The results reveal that LSTM + 1DCNN is particularly well suited for signal prediction with considerable variability. It constantly outperforms other architectures used for comparison, with average error percentages of less than 2%, proving the architecture’s ability to replace physical sensors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3