Investigation of a Hybrid LSTM + 1DCNN Approach to Predict In-Cylinder Pressure of Internal Combustion Engines

Author:

Ricci Federico1ORCID,Petrucci Luca1ORCID,Mariani Francesco1ORCID,Grimaldi Carlo Nazareno1ORCID

Affiliation:

1. Engineering Department, University of Perugia, Via Goffredo Duranti, 93, 06125 Perugia, Italy

Abstract

The control of internal combustion engines is becoming increasingly challenging to the customer’s requirements for growing performance and ever-stringent emission regulations. Therefore, significant computational efforts are required to manage the large amount of data coming from the field for engine optimization, leading to increased operating times and costs. Machine-learning techniques are being increasingly used in the automotive field as virtual sensors, fault detection systems, and performance-optimization applications for their real-time and low-cost implementation. Among them, the combination of long short-term memory (LSTM) together with one-dimensional convolutional neural networks (1DCNN), i.e., LSTM + 1DCNN, has proved to be a promising tool for signal analysis. The architecture exploits the CNN characteristic to combine feature classification and extraction, creating a single adaptive learning body with the ability of LSTM to follow the sequential nature of sensor measurements over time. The current research focus is on evaluating the possibility of integrating virtual sensors into the on-board control system. Specifically, the primary objective is to assess and harness the potential of advanced machine-learning technologies to replace physical sensors. In realizing this goal, the present work establishes the first step by evaluating the forecasting performance of a LSTM + 1DCNN architecture. Experimental data coming from a three-cylinder spark-ignition engine under different operating conditions are used to predict the engine’s in-cylinder pressure traces. Since using in-cylinder pressure transducers in road cars is not economically viable, adopting advanced machine-learning technologies becomes crucial to avoid structural modifications while preserving engine integrity. The results show that LSTM + 1DCNN is particularly suited for the prediction of signals characterized by a higher variability. In particular, it consistently outperforms other architectures utilized for comparative purposes, achieving average error percentages below 2%. As cycle-to-cycle variability increases, LSTM + 1DCNN reaches average error percentages below 1.5%, demonstrating the architecture’s potential for replacing physical sensors.

Publisher

MDPI AG

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3