Evaluation of the Genetic Diversity and Differentiation of Black Locust (Robinia pseudoacacia L.) Based on Genomic and Expressed Sequence Tag-Simple Sequence Repeats

Author:

Guo Qi,Li Xiuyu,Yang Shuhong,Yang Zhiheng,Sun Yuhan,Zhang Jiangtao,Cao Sen,Dong Li,Uddin Saleem,Li Yun

Abstract

Understanding the genetic diversity and differentiation of the genetic resources of a species is important for the effective use and protection of forest tree resources. Ex situ development is a common method for the protection of genetic diversity and an essential resource for users who require ready access to a species’ germplasm. In this study, we collected seeds of black locust (Robinia pseudoacacia L.) from 19 provenances, covering most of its natural distribution; we randomly selected 367 tender leaves with well-grown and different maternal strains from this group for further analysis. Forty-eight simple sequence repeat (SSR) primers were successfully selected from 91 pairs of SSR primers using native-deformation polyacrylamide gel electrophoresis. In addition, we identified identical genotypes among all individuals and evaluated the quality of the markers. From this, 35 loci were confirmed for analyses of genetic diversity and differentiation of the black locust provenances, which contained 28 expressed sequence tag-derived simple sequence repeats (EST-SSRs) and 7 genomic DNA-derived simple sequence repeats (G-SSRs). We observed high genetic diversity among the native black locust provenances, from which Wright’s fixation index and molecular variance suggested that a majority of the genetic differentiation variation could be attributed to within-provenance differences. The genetic distance and identity results indicated that geographic distance was not a dominating factor influencing the distribution of black locust. This is the first study to evaluate provenance genetic variation in native black locust samples using two types of SSR markers, which provides a comprehensive theoretical basis for ex situ conservation and utilization of genetic resources, with an emphasis on breeding applications.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3